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Abstract
Retrieval-augmented generation (RAG) services are rapidly gaining
adoption in enterprise settings as they combine information retrieval
systems (e.g., databases) with large language models (LLMs) to en-
hance response generation and reduce hallucinations. By augment-
inganLLM’sfixedpre-trainedknowledgewithreal-time information
retrieval, RAG enables models to effectively extend their context to
large knowledge bases by selectively retrieving only the most rel-
evant information. As a result, RAG provides the effect of dynamic
updates to the LLM’s knowledge without requiring expensive and
time-consuming retraining.While somedeploymentskeep theentire
database in memory, RAG services are increasingly shifting toward
persistent storage to accommodate ever-growing knowledge bases,
enhanceutility, and improve cost-efficiency.However, this transition
fundamentally reshapes the system’s performance profile: empirical
analysis reveals that the Search & Retrieval phase emerges as the
dominant contributor to end-to-end latency. This phase typically
involves (1) running a smaller languagemodel to generate query em-
beddings, (2) executing similarity and relevance checks over varying
data structures, and (3) performing frequent, long-latency accesses
to persistent storage. To address this triad of challenges, we propose
a metamorphic in-storage accelerator architecture that provides
the necessary programmability to support diverse RAG algorithms,
dynamic data structures, and varying computational patterns. The
architecture also supports in-storage execution of smaller language
models for query embedding generation while final LLM generation
is executed on DGX A100 systems. Experimental results show up
to 4.3× and 1.5× improvement in end-to-end throughput compared
to conventional retrieval pipelines using Xeon CPUs with NVMe
storage and A100 GPUs with DRAM, respectively.
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1 Introduction
Retrieval-augmented generation (RAG) [44] combines the genera-
tive power [84] of large language models (LLMs) with the precision
and contextual relevance of information retrieval systems such as
databases, knowledge bases, and web pages. As such, RAG services
(referred to as RAGs) enable LLMs to provide verifiable responses
that come with citations to specific sources in the database and re-
duce the risk of hallucinations [26, 83] that could cause serious legal,
financial, and intellectual issues in enterprise applications. Further-
more, RAGs augment LLMswith an organization’s internal database
and help maintain timeliness by providing them with up-to-date
information without the high cost and challenges of fine-tuning or
retraining [66]. These advantages have fueled the rapid adoption
of RAGs in healthcare [59, 94], finance [93], law [68], and scientific
publishing [1], where staying factual and current with evolving
information is essential.
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In a sense, retrieval-augmented generation enables LLMs to effec-
tively extend their context windowwith the content of a complete
database. The contextwindow is the range of tokens that an LLMcan
consider when generating its response. Increasing the context win-
dow length is costly, as the transformer layer, the core component of
an LLM, has a time complexity that increases quadratically with the
context window length [85]. As such, simply expanding the context
window to fit the entire database’s contents becomes computation-
ally infeasible. Although recent advances (e.g., Google’s Gemini
1.5 Pro) have extended context lengths to two million tokens [21],
long-context LLMs remain inefficient as context size increases, due
to high computational costs and declining accuracy [31], making
them unsuitable for reasoning over knowledge bases. Thus, RAGs
continue to play a critical role in integrating external knowledge
into generative applications. Rather than physically increasing the
context window, RAGs search the database and only inject relevant
information into the context window to construct an augmented
query. Some deployments even pay the high cost of keeping the
entire database in memory [5, 72] for responsiveness. However,
RAGs are increasingly shifting toward using persistent storage to
accommodate ever-growing knowledge bases, enhance utility, and
significantly improve cost-efficiency [3, 5, 9, 22, 30, 38, 75, 78, 87, 91].

While much of the recent research has focused on accelerating
LLM inference [8, 14, 25, 27, 28, 34, 43, 67, 70, 71, 92], our analysis of
end-to-end RAGs on AmazonWeb Services indicates a different bot-
tleneck. Based on experiments using NVIDIA DGXA100 GPUs with
the PubMed dataset (5 million documents) and various similarity
metrics and retrieval algorithms, we find that, on average, 61% of the
total runtime is spent in the Search&Retrieval phase rather thanLLM
inference. This phase typically consists of: (1) generating query em-
beddings using a language model to enable relevance evaluation; (2)
employing various data structures and algorithms for similarity and
relevance checks, which may differ across datacenter deployments;
and (3) interleaving these computations with frequent, long-latency
storage accesses, which can dominate the overall RAG pipeline.

To address this triad of challenges, we propose a shape-shiftingmeta-
morphic in-storage accelerator architecture to provide the necessary
programmability and dynamism to support various RAG algorithms
and their dynamic data structures and shapes. This architecture can
also run the embedding generation that requires inferencing with a
language model while adhering to the rather stringent thermal and
power constraints of the storage device [23, 42, 55, 56]. We refer to
this in-storage programmable acceleration approach for disaggregated
datacenters as RAGX. This design is proposed to serve a variety of
RAGs that utilize different algorithms and data structures for the
similarity checks. Some rely on various distance calculations be-
tween the embedding of the original query and the entries in a vector
database, which are also in the formof embeddings. Others count the
frequency of keywords between the query and the entries using hash
tables and inverted indices. In addition, these algorithms require data
structures with data-dependent, dynamic shapes that are contingent
on the contents of the query. To support dynamic algorithms and
metrics in RAGs, we also propose a novel Metadata Navigation Unit
that directly loads data from the NAND arrays of the storage devices
into the accelerator on-chip memory.

While also offering strategies for the co-location of compute and
data, we evaluated RAGX using five diverse end-to-end RAG de-
ployments that utilize LLAMA2 (34B). Because both the content of

the database and the nature of the queries can significantly affect
retrieval and response quality, we use a realistic dataset contain-
ing PubMed [24, 62] documents with 50 million passages and 3,800
BioASQ [39] queries. RAGX achieves up to 4.3× end-to-end through-
put improvement over a conventional deployment that uses a Xeon
CPU with NVMe storage for retrieval, search, and augmentation,
andDGXA100GPUs for LLM inferencing.When theXeonCPUwith
NVMe is replaced by anA100GPUwithDRAM, RAGX provides up to
1.5× end-to-end throughput improvement.Weperform rigorous sen-
sitivity studies that change the LLM fromLLAMA2 (13B) toLLAMA2
(70B) and also consider different database sizes (0.5M, 5M, 50M, and
500M passages). The results show that benefits from RAGX grow as
the size of the database increases, even when the LLM is largest.

2 RAG: Concept to Datacenter Deployment
Figure2 illustrates the typicalRAGpipelineonAmazonWebServices
(AWS) [60, 80, 81] and its threemajor phases: Search&Retrieval,Aug-
mentation for Query Reconstruction, and Referenced Generation. To
ground thequery responsewithconcrete information in thedatabase,
the first phase searches the database to identify themost relevant en-
tries using a similarity score that varies across RAGdeployments and
algorithms. Some classes of RAGalgorithmsuse embeddings [18, 57],
while others utilize keyword frequencies [16, 76]. Figure 2 represents
deployment of the former class onAWS. The latter class is alike in ex-
ecution with some differences discussed in §2.3. In the context of the
depicted pipeline, this section offers an intuitive perspective on how
the interplay between iterative storage accesses and similarity score
computation affects end-to-end RAG execution and performance in
a disaggregated datacenter.

2.1 Offline Vector Database Generation
Prerequisites and graphmetadata: To perform similarity checks
efficiently, RAGs generate a vector database representation of docu-
ments in the enterprise knowledge base [24]. This offline process is
performed once and involves segmenting each document from the
database into passages and embedding them using a transformer-
based neural network such as ColBERT [36] or GTR [63]. These
embeddings represent each passage of the documents in the data-
base as high-dimensional dense vectors that preserve the semantics
of the text, which is essential for similarity checks. These embed-
dings are stored in a vector database that uses graphs to expedite
the search [12, 30, 47, 57]. These graphs, which we refer to as meta-
data, consist of vertices pointing to the actual embeddings and are
typically stored in DRAM for fast navigation. While each vertex of
the graph points to an embedding, the existence of edges denotes se-
mantic proximity between the corresponding embeddings. As such,
when searching to identify the most relevant and similar passages
to the query, the metadata graph enables quick navigation of the
vector database by skipping irrelevant portions and exploring the
most semantically relevant entries.

On the other hand, the embeddings themselves, which are much
larger, are typically stored on low-latency NVMe storage drives in
cloud environments [3, 5, 9, 22, 30, 38, 75, 78, 87, 91]. The original
passages are stored separately in object storage such as Amazon S3,
leveraging its cost-effectiveness for large-scale unstructured data.
Thismulti-tiered approachbalances performancewith cost, enabling
RAGs to efficiently handle large volumes of data. The vector database
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Figure 2: RAG query workflow in datacenter. The Search & Retrieval phase embeds the query using a languagemodel and exhibits an iterative

storage access patternwhere each embedding retrieval is contingent upon prior distance computations.

and metadata graph are algorithmic techniques designed to expe-
dite RAGs that perform similarity checks intertwined with frequent,
iterative storage accesses when servicing queries.

2.2 Online Query Processing
As Figure 2 shows, the RAGworkflow, deployed as a service in a dis-
aggregated datacenter, begins when a customer submits a query to
the datacenter gateway, which acts as the entry point. After perform-
ing basic integrity checks and load balancing, the query is dispatched
to specialized nodes for the Search & Retrieval process.
❶ Search&Retrieval.This phase begins by transforming the query
into a vector representation using the sameneural embeddingmodel,
which is a language model like ColBERT [36] or GTR [63], applied
to the passages in the offline phase. This transformation is crucial
and enables direct comparison between the query and passage repre-
sentations using vector distance computation functions (e.g., cosine
similarity, ℓ2-norm). The similarity search then proceeds by utilizing
themetadata stored inDRAM to efficiently traverse the database and
identify embeddings that are most similar to the query. Using the
metadata graph, only a subset of the embeddings is retrieved from
the vector database in an iterative manner. Each iteration retrieves a
subset of passage embeddings from NVMe storage and calculates a
similarity score for each of them. Then, based on these calculations
and the structure of the graph metadata, the next set of embeddings
to be retrieved from the storage is determined. This process is in-
herently iterative, involving multiple rounds of interleaved graph
traversal, storage access, and score calculation.

In disaggregated datacenters, these storage requests are managed
through a storage access layer. Despite using high-performance
NVMe storage, which offers best-in-class low-latency local stor-
age [90], each access still incurs latency due to PCIe interface tra-
versal and data retrieval operations. The sequential nature of this
process creates a critical bottleneck, as each iteration depends on the
results of the previous, limiting opportunities for parallelization or
prefetching. This iterative process manifests as a series of alternat-
ing storage accesses and similarity computations. The cumulative
effect of these repeated sequential storage operations substantially
increases the overall system latency. Hence, RAGs face significant
challenges when increasing to larger databases in production envi-
ronments, as detailed in §2.4.
❷ Augmentation for Query Reconstruction. The objective of the
Search&Retrieval stage is to identify the top-𝑘 passages that have the

highest similarity score to the query at hand. Once identified, these
top-𝑘 passage IDs are sent over the network to an Augmentation for
Query Reconstruction node where the main document database is
accessed to obtain the original corresponding text. It is common for
the original text to be stored in key-value storage for unstructured
data (e.g.,AWSS3).Although this tier hashigher latency compared to
NVMe storage, this final retrieval step occurs only once per query, in
contrast to the iterative accesses to storage during Search&Retrieval.
Themultiplicity of retrieved passages is used to augment the original
query to create a new one with the context from the database. As
such, with this similarity-based search and augmentation, RAG aims
to effectively extend the context of LLMs with an entire database.
❸ Referenced Generation. In the final stage of the RAGworkflow,
the augmented query is sent to a high-performance server instance
over the network, such as a DGX A100 GPU cluster, which runs
the LLM inference to generate a response. This stage leverages the
computational capabilities of GPUs to process the augmented and
context-rich query efficiently. The generated response also now has
concrete citations to a source document in the database. As such, the
response can be traced back and verified, crucial for the majority of
enterprise applications that cannot tolerate hallucinations.

2.3 Storage-Compute Interplay in Retrievers
Having established the deployment architecture and workflow of
RAGs in disaggregated datacenters, we now dive deeper into the re-
triever component.The retriever is themodule thatuses themetadata
to search and identify the most relevant passages for query augmen-
tation, which involves iterative accesses to the storage and, thus,
incurs their overhead. Retrievers used in RAG can be broadly catego-
rized into two types: embedding-based and keyword-based. Despite
their algorithmic differences, our analysis reveals that both types
share similar structural patterns in their implementation and face
comparable challenges in terms of storage access and computation.

To better understand the interactions and bottlenecks in both
types of retrievers, we conceptualize their operation across three
planes: the representation plane for retrieval (located in direct-
attached NVMe storage), the metadata plane for search (stored in
DRAM), and the compute plane for search and retrieval. This concep-
tual separation allows us to clearly identify where and how storage
access bottlenecks occur in both keyword-based and embedding-
based retrieval systems.
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Embedding-based retrievers. These neural networks, typically
the encoder portion of a languagemodel [10, 63], encode queries and
passages into dense vector representations (i.e., embeddings) that
capture semanticmeaning. The use of embeddings enablesmatching
the queries and the passages according to their conceptual similar-
ity rather than the amount of keyword overlap, which is used in
keyword-based retrievers. Figure 3 depicts the Search & Retrieval
workflow across the aforementioned three conceptual planes. The
passage embeddings live in the representation plane (located in
the NVMe). Without graph metadata, the Search & Retrieval phase
would need to exhaustively retrieve and score each passage’s em-
bedding, incurring immense overheads. In this paper, we use the
HNSWmetadata graph, which is currently one of the most popular
options [57]. As discussed, this metadata graph is constructed once
offline, captures the semantic similarity of the passages in the data-
base, and represents their relationships. As such, it is an algorithmic
optimization to reduce storage accesses and to enable the use of a
graph search algorithm for efficient traversal and identification of
highly similar passages to the query.

The retrieval process startswhen a query arrives and is embedded
by the same transformer-based encoder. Next, an initial vertex is des-
ignated as the current vertex from the graph, which serves as a start-
ing point for the search. Structurally, HNSW is designed such that
neighboring vertices are the most similar semantically. Each vertex
contains a pointer to its corresponding embedding in the representa-
tionplane in theNVMestoragedevice, as Figure 3 shows.Using these
pointers, the compute plane fetches the embeddings from NVMe for
the current vertex and its neighbors. Then, it computes the similar-
ity score using a distance metric (e.g., cosine similarity or ℓ2-norm)
to score all the neighbors. These distance calculations determine
the similarity between the query and potential matching passages.
The retriever then chooses a subset of the neighbors that have the
smallest distances (i.e., the highest similarity) to continue its search.
The neighbors with the highest similarity score are the most promis-
ing vertices in the graph to explore. Each neighbor now becomes a
current vertex, and its neighbors’ embeddings will be retrieved from
the storage and examined next through distance calculations. This
interleaved storage-compute search cycleusing thegraph is repeated
until the top-𝑘 most similar passages to the query are identified.

As discussed, each step in the search process for the embedding-
based retriever depends on the previous step, introducing a sequen-
tial dependency and making the storage accesses for embeddings a
significant bottleneck. This characteristic makes embedding-based
retrieval particularly sensitive to storage access latencies, especially
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when dealing with large databases containing copious passages. De-
spite the graph metadata that prevents retrieving and examining
every embedding from storage, making the search more sample-
efficient, the search still comprises iterative storage accesses with a
sequential dependency to computation. This major bottleneck calls
for innovations to manage storage access overheads, even when
local NVMe and algorithmic optimizations are rigorously utilized.
Keyword-based retrievers. These encode passages as sparse vec-
tors where each element corresponds to the presence of a specific
keyword. These vectors are used to match keywords from the query
withpassages containing ahigh frequencyof that samekeyword. Fig-
ure 4 illustrates the Search&Retrievalworkflow across the three con-
ceptual planes of compute, metadata (memory), and representation
(storage). In the representation plane that lives in the storage, each
keyword is assigned to a posting list. A posting list contains all the
pointers to the passages in the document database that contain the
keyword and also records the frequencywithwhich the keyword ap-
pears in the corresponding passage. In the metadata plane, keyword-
based retrievers utilize an inverted index, which is a hash from the
keywords to their pointers that can be used to retrieve their posting
list from the storage. This metadata enables a constant time lookup
of the frequencies for a given keyword in all passages in the database.

The search process aims to find relevant documents and begins
when a query arrives and undergoes a vector generation process that
depends on the retrieval algorithm. One class of more traditional
algorithms (e.g., BM25 [76]) tokenizes the query into individual key-
words. The othermoremodern class (e.g., SPLADEv2 [16]) passes the
query through a transformer-based encoder to generate an embed-
ding. This embedding vector not only captures keywords that are in
the query but also represents semantically related keywords that are
not explicitlymentioned. Eachword in the embedding (keyword or a
semantically related word) is then hashed to a pointer that identifies
the corresponding posting list in storage. The hash of pointers from
either the tokenized keywords or the embeddings constitutes the
inverted index, which is metadata for Search & Retrieval and is kept
in memory. Given the inverted index, the keyword’s posting list is
retrieved from NVMe storage in the representation plane, which
contains passage IDs and keyword frequencies.

For each keyword in the query, the retriever uses the inverted in-
dex to find and locate all the posting lists that contain the keywords
or their semantically related words. Each passage in the posting
list is then scored based on a scoring metric such as TF-IDF (Term
Frequency-Inverse Document Frequency) to calculate which pas-
sages have the most keyword overlap with the query. These scores
are then inserted into a priority queue based on their overlap score.
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This process repeats for each keyword in the query. Once finished,
the top-𝑘 passages can be popped from the front of the priority queue
that has thehighest score in termsof keywordoverlapwith the query.
Although this computation can be performed independently for each
keyword, the storage needs to be accessed for each keyword, and the
access latency is higher than the computation latency. That is, the
disparity between storage access and computation latency makes
storage the main bottleneck, causing serialization of the operations.
Structural similarities and challenges. Both keyword-based and
embedding-based retrievers exhibit structural similarities in their
storage access patterns and computational requirements. They both
rely heavily on iterative storage accesses to retrieve representations
(embeddings or posting lists) from NVMe storage. Both classes also
employ a metadata structure (graph or inverted index) to guide the
Search & Retrieval process. The key challenge for both classes lies in
the interdependence and interleaving of storage and computation.
Furthermore, as the database grows, the associated metadata and
representations (embeddings or posting lists) grow proportionately.
As such, finding themost relevant passages requires a larger number
of storage accesses, making the bottleneck more pronounced.

2.4 Characterization of RAG in Datacenters
To empirically quantify the performance characteristics and bottle-
necks of RAGs, we conduct comprehensive experiments on AWS us-
ing five diverse RAGs with various retrieval algorithms (see Table 1).
Performance-cost trade-offs inRAGs. Figure 5(a) reports the nor-
malized throughput and $cost per query for various retrieval config-
urations using 5 million passages from the PubMed dataset [24, 62]
relative to a CPU-NVMe baseline. The CPU-DRAM configuration,
which stores all passage embeddings in DRAM and performs query
embedding on the CPU, achieves the highest throughput–1.9× that
of the baseline–by avoiding high-latency storage accesses. However,
this performance gain incurs a 117% increase in $cost per query,
making it impractical for large-scale deployments with cost con-
straints. This trade-off underscores the increasing adoption of SSD-
based storage for representations in both industry [9, 30, 38, 78] and
academia [3, 5, 22, 75, 87, 91], which seek to balance throughputwith
storage capacity and operational cost. Recent studies, such as one
from Alibaba [5], reinforce this trend, emphasizing that SSD-based
secondary storage is essential for efficiently handling large-scale
vector searches in modern services, including RAGs.
Search & Retrieval is the primary bottleneck in RAGs. Fig-
ure 5(b) shows the runtime breakdown of the benchmarks with two
AWS storage configurations (local NVMe and networked EBS) using

5million passages.While the AWSNVMe setup uses direct-attached
local storage, the AWS EBS employs network-attached storage. In
linewith current deployments and research [17, 33, 44, 81] that show
using GPUs is beneficial for LLM inferencing and not for retrieval
and augmentation, we run those phases on a Xeon CPUwhile the
LLAMA2 (34B) is running on A100 GPUs. Even with local NVMe,
Search & Retrieval accounts for, on average, 61% of the total latency,
and this increases to 88% when networked EBS storage is used.
Incurrentsystems,retrievalfromstoragedominatestheSearch
& Retrieval phase. Looking into the Search & Retrieval phase, we
find that the retrieval latency for representations from storage is
the main bottleneck in current systems. Figure 5(c) quantifies this
impact by showing the runtime breakdown of the Search & Retrieval
phase. Even in the local NVMe configuration, 74% of the runtime is
consumed by storage access, increasing to 94% with networked EBS
storage. The use of an HNSWmetadata graph reduces the number
of storage accesses to 395 with 5 million passages and the ColBERT
embedding-based retriever. Nonetheless, storage accesses are still
the bottleneck. Each storage access incurs an average latency of
155 𝜇𝑠 on a Samsung 970 EVONVMe SSD, which gets compounded
with the iterative nature of the Search & Retrieval phase (see §2).
Co-locating query embedding with Search & Retrieval is im-
perative. Given the size of embedding models like ColBERT and
Google’s GTR (419.62 MB), the potential for accelerated processing
becomes apparent. One could imagine delegating the query embed-
ding, which requires inference with a language model, to a GPU.
However, in disaggregated datacenters, thiswouldmean performing
query embedding on a separate node and incurring an additional
network latency to retrieve the embedding (see §5.2.5). To high-
light the limitations of using a disaggregated GPU for embedding
offloading, we analyze an idealized scenario in which all embed-
ding vectors are stored entirely in DRAM. This setup eliminates
storage access latency, allowing us to isolate and emphasize the over-
heads introduced solely by the disaggregated GPU architecture. As
shown in Figure 5(a), this Disag-DRAM system results in a 28% lower
throughput for a dataset with 5 million passages (11% for 50 million
passages; see Figure 11) compared to the non-disaggregated CPU-
DRAM system. This is due to network overhead that adversely affects
disaggregated setups likeDisag-DRAM, where embedding generation
is offloaded to a GPU node. Our measurements show an average of
86ms latency between twoAWSEC2 instances deployed in the same
zone (USWest), measured at random times over the course of aweek.
The use of NVMe to store the embeddings would exacerbate the
aforementioned results (see Figure 11). The Search&Retrieval phase,
which also includes query embedding, still contributes 24% and 58%
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of the total runtime for datasets with 5 million and 50 million pas-
sages, respectively (seeFigure11).This additional latencynegates the
performance gains achieved by removing storage overheads. Thus,
eliminating storage accesses and co-locating query embedding with
Search & Retrieval is imperative to eliminate network overheads and
ensure efficient query processing in disaggregated datacenters.

3 RAGX: In-Storage Acceleration for RAGs
As discussed, retrievers frequently access NVMe storage, fetch em-
beddings or posting lists, and use language models to embed the
query. To address these requirements, we propose RAGX, which in-
tegrates a programmable accelerator within storage devices. This
integration enables the accelerator to perform query embedding
using language models and directly fetch the embeddings or posting
lists from the NAND arrays during the Search & Retrieval phase. Our
objectives are (1) to minimize data movement through in-storage
computation and (2) to efficiently support various embedding gen-
eration and retrieval algorithms within the storage device’s power
limitations. Storage devices are constrained by a strict 15W power
budget [23, 42, 55, 56] due to thermal and reliability issues. To address
the latter, we propose a shape-shiftingmetamorphic accelerator dis-
cussed in §4. As Figure 6 depicts, this section discusses the in-storage
integration of the accelerator within the SSD devices.
Direct NAND array accesses.As depicted in Figure 6(b), we inte-
grate theaccelerator alongside theSSD’smaincontroller.Bydoingso,
the accelerator can directly interact with the flash translation layer
(FTL) and the flash controller, connecting to the SSD’s high-speed
internal bus. The accelerator can directly transfer data between the
NAND arrays and its on-chip memory, bypassing the SSD’s main
DRAM buffer when appropriate. The metamorphic accelerator har-
bors aDMAengine that performs these transfers. This direct path sig-
nificantly reduces the latency for retrieval operations andminimizes
power consumption by avoiding unnecessary data movement. As
such, RAGX’s metamorphic accelerator benefits from lower-latency
data accesses and high-bandwidth communication with the NAND
arrays. Furthermore, this in-storage integration alleviates the over-
heads of data transfer over the PCIe system interconnect.

3.1 System Integration
To leverage the full potential of in-storage accelerators co-located
withNANDflash and to address the challenges posed by increasingly

largedatabases,RAGX introduces systemprimitives formulti-storage
acceleration. These primitives facilitate efficient data movement be-
tween the storage and the accelerator, manage dynamic reconfigura-
tion of the hardware, and enable direct communicationwith the host
system and other accelerators through extended NVMe commands,
all while maintaining compatibility with existing system primitives.
Host interface. To expose RAGX’s capabilities to the host system,
we extend the NVMe command set with custom admin and I/O
commands. These commands allow the host to offload both query
embedding and the Search & Retrieval tasks to RAGX’s metamorphic
accelerator, configure its operational parameters, and retrieve results.
The extended command set is backward compatible with standard
NVMe operations, ensuring the SSD can function normally.
Firmware integration.We extend the SSD’s firmware to include
a RAGX driver that manages communication between the host, SSD
controller, and themetamorphic accelerator. This driver handles task
scheduling, resourceallocation, andpowermanagement forRAGX, in-
tegrating its operations seamlessly with the SSD’s existing firmware.
Host-device communication. The metamorphic accelerator and
the flash storage use the same PCIe links to communicate with the
host. A switch in the computational storage routes requests to either
the flash storage device or the accelerator based on the request type.
Device-to-device communication. RAGX supports multi-device
execution to handle larger dataset sizes. As will be discussed, we
use a data placement strategy that prevents inter-device and inter-
accelerator communication during retriever execution. However,
during the initiation of the execution, there is configuration data that
needs to be transferred between different devices and theirmetamor-
phic accelerators. Furthermore, in multi-device execution, we use a
single RAGX storage drive to embed the query and then broadcast the
embedded query to the other RAGX storage drives. To accomplish
this, the peer2peer PCIe connection between the storage devices is
used and, as such, bypasses the host CPU.

3.2 Data Placement Strategy
Private, smaller HNSW graphs for embedding-basedmulti-
device in-storageacceleration.Tomanagerepresentationdatabases
that exceed the available capacity of a storage drive, RAGX supports
multi-device in-storage acceleration. The data that RAGX deals with
is the collection of embeddings and the associated HNSWmetadata
graph for the embedding-based retrievers. The HNSW metadata
lives in the DRAM, but the embeddings need to be stored in the
NAND flash. For multi-device execution, the embeddings and the
metadata need to be allocated to keep the computation local and
avoid inter-device communication. Hence, instead of using a single
HNSW for all the data, which is shared across multiple devices, we
partition the passage embeddings and generate a dedicated private
HNSWfor each device,which is smaller. The trade-offhere is that the
cumulative computation across all devices is greater than in the case
of a single, larger HNSW. However, with our setup, there is no costly
device-to-device communication. Moreover, the devices perform
computation in parallel without dealing with a centralized HNSW,
which would have been a bottleneck. In addition, since each device
is searching a smaller graph in parallel with other devices, the recall
stays the same or may even improve. On the other hand, there is an
increased cumulative amount of computation, leading to an increase
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in local energy consumption. However, the overall energy consump-
tion decreases. We perform rigorous empirical studies in §5.2 to
quantify all the aspects of this data partitioning and its trade-off.
Replicated inverted indices for keyword-basedmulti-device
in-storage acceleration. For keyword-based retrievers, although
we evenly partition the posting lists, the metadata (inverted index),
is replicated across all devices. The host CPU also holds a copy of
the inverted index and identifies which devices need to process
which keywords. The CPU initializes the corresponding devices
with their list of keywords. As discussed in §2.3, the computation
of each keyword with the keyword-based retrievers is independent
of the other keywords. Therefore, the participating storage devices
do not need to communicate during the execution. After processing
their allocated keywords, all devices send their results back to the
host CPU that does top-𝑘 selection for augmentation and generation.
Overall, each drive performs a local similarity search, and the results
are aggregated on the CPU for top-𝑘 selection. This process ensures
that, for a given query, the representation database is sufficiently
exploredwhile leveraging the speedof local processingon eachdrive.

4 Metamorphic Accelerator for In-Storage RAGs
Our objective is to provide a single programmable accelerator that
supports both embedding-based andkeyword-based retrieverswhile
adhering to the thermal and power constraints of storage devices.
For embedding-based retrievers, the query must be transformed
into an embedding, a process that involves running a neural net-
work (language models like ColBERT [36] or GTR [63]). Besides
running such language models, RAGX’s in-storage accelerator needs
to support high-throughput computation of similarity scores over
high-dimensional embeddings (e.g., cosine similarity or ℓ2-norm)
for embedding-based retrievers and over posting lists using met-
rics such as TF-IDF [69] or BM25 [76] for keyword-based retrievers.
Moreover,modernkeyword-based retrievers such as SPLADEv2 [15]
utilize a combination of both embedding-based and keyword-based
scoring. The accelerator architecture needs to support both running
a transformer-based language model as well as diverse forms of data
traversal and computation for similarity scoring. Embedding-based
retrievers rely on an HNSW graph to identify embeddings for each
vertex and its neighbors, while keyword-based retrievers use an in-
verted index to locate posting lists for query keywords. As discussed

in §2, the size and location of the data fetched from storage are deter-
mined dynamically based on the query. For embedding-based retriev-
ers, the size depends on the embedding dimensions and the number
of neighbors for the current vertex in theHNSWgraph. For keyword-
basedretrievers, thesizecorresponds to thenumberofpassages in the
posting lists for thequerykeywords.Thisdynamic, query-dependent
nature requires a mechanism to efficiently interpret metadata, fetch
representations, and manage the subsequent computation.

4.1 Shape-ShiftingMetamorphic Accelerator
To address these challenges, we propose ametamorphic architecture
that shape-shifts from a systolic-based neural accelerator to a collec-
tion of parallel SIMD units. This is because various distance metrics
cannot effectively utilize the 2D systolic array and aremore appropri-
ate for single-dimensional vector execution. Fortunately, these com-
putations are performed in disjoint phases, providing an opportunity
to reconfigure the same architecture for different forms of execution.
To that end, the metamorphic accelerator in Figure 7, with limited
modifications, converts the columns of a systolic neural accelerator
into a collection of vector processors. This dynamic shape-shifting
also matches the insight that the distance computation in RAG both
for keyword-based and embedding-based retrieval methods can be
decomposed into the following two phases. (1) A series of simple
element-wise vector operations that can be efficiently mapped onto
the 2D systolic unit. (2) A series of complex operations, such as nor-
malization, that can be handled by a set of vector units. This insight
allows us to maintain the efficiency of a 2D systolic array for the
bulk of the computations while introducing targeted enhancements
to support the full range of RAG operations. To support both modes
(systolic and vector) efficiently, the processing element is systemat-
ically enhanced with additional arithmetic units and control logic.

4.2 Metamorphic Accelerator: Microarchitecture
As shown in Figure 7, the architecture supports a shape-shifting
execution model that dynamically reconfigures a systolic array of
metamorphic execution engines (XEs) and a set of scalar engines
(SEs) located beneath the array. Each column of the systolic array
is equipped with a vector processor front end positioned above the
XEs. This front end becomes activewhen the architecture transitions
into vector execution mode. This metamorphic design builds upon
conventional systolic and vector execution paradigms. The systolic
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mode is optimized for general matrix multiplication (GeMM), while
the vector mode targets non-GeMM computations such as distance
functions in retrieval workloads.We observe that distance functions
can be efficientlymapped to this architecturewithminimalmodifica-
tions to the PE microarchitecture (see Figure 7(c)). In systolic mode,
each XE functions as a conventional PE. The internal multiplexers
(control path set to one) are configured to enable the operand and
partial sum forwarding paths typical of systolic execution. Each PE
contains a fused multiply-accumulate (MAC) unit, a local weight
buffer, input/output registers, and forwarding logic for propagating
data along the systolic wavefront.

When transitioning to vector mode, control logic reconfigures
multiplexers to reroute data through a vertical operand pipeline.
Each column of XEs is dynamically reinterpreted as a vector engine,
where each XE implements one pipeline stage. In this setup, the ar-
chitecture exploits fine-grained vertical pipelining to achieve vector
parallelism. The vector processor front end atop each column fetches
instructions, generates addresses, and distributes control signals.
Operands are stored in scratchpads within each XE (repurposed
from weight buffers used in systolic mode). Vertical registers be-
tween adjacent XEs are enhanced to act as pipeline latches, passing
data and metadata (e.g., addresses) to the next stage. All XEs in a
column execute the same operation, defined by the current vector
instruction. However, each column operates independently, main-
taining its own program counter and instruction stream via its front
end. This design allows different vector engines to execute distinct
vector kernels concurrently.
Metamorphic execution engines (XEs).EachXE supports two ex-
ecution modes: it acts either as a PE in systolic mode or as a pipeline
stage in vector mode. The core components of the XE, shown in
Figure 7(c), include a MAC unit for GeMM operations, a local buffer
that serves as a scratchpad in vector mode, and a set of input/out-
put registers. The shape-shifting functionality is enabled through
a network of multiplexers controlled by a mode configuration bit
set by the global execution controller. These augmentations allow
the XEs to switch between dataflow (systolic) and pipeline (vector)
operation with minimal area overhead while reusing much of the
existing PE microarchitecture.
Scalar engines (SEs). To support complex scalar operations re-
quired by RAG, each column includes an SE positioned below the
XE pipeline. These scalar engines, which are shown in Figure 7(d),
implement high-latency, resource-intensive functions such as divi-
sion, square root, and logarithm operations frequently used in re-
trieval scoring functions. For example, SEs compute square roots for
ℓ2-norm or logarithms for BM25 scoring. In vectormode, each SE op-
erates as an extension of its corresponding vector engine, executing
scalar instructions that accompany vector instructions. Specifically,
eachvectorengineexecutesan instructionpairof the form ⟨vector,
scalar⟩, where the scalar instruction typically follows the vector
operation to complete the final computation step. In systolic mode,
the SEs are collectively reconfigured to form a standalone horizontal
vector processor. The front-end unit for this processor is located at
the bottom left of the array, as depicted in Figure 7(a). This horizontal
vector engine complements the systolic array during neural network
inference, particularly for embedding computations that require
vector operations beyond GeMM (e.g., normalization, bias addition).

Query
Representa,on

Instruc,ons	to	
Metamorphic	
Accelerator

Data	to	
Metamorphic
Accelerator

Kernel	Configura-on	
Unit

Template	
Cache

Parameter	
Inser,on

Instruc,on	
Buffer

Storage	
NVMe	
Interface

LBA	Translator

<	Opt,	Addr,	Size	>

DRAM
PCIe
Interface

Dimension	 Address	
Genera,on

In
st
ru
c-
on

s

DMA

LD/ST	Request	Decode

LBAs

DMA

SQ CQ

Programmable	Memory	Interface

NVMe	Command	Generator

NVMe	Command
Queue

Registers

Figure 8: Microarchitecture ofMetadata Navigation Unit.

Additionally, in embedding-basedHNSWretrieval, SEs play a critical
role in graph traversal by sorting vertex scores after each iteration.
The sorted results are then written to a DRAM-resident priority
queue that guides the selection of the next nodes to evaluate.

4.3 Metadata Navigation Unit
Besides performing the computation, there is a need for a unit that
supplies the appropriate data to the metamorphic accelerator. This
unit needs to navigate the metadata, which is the HNSW graph for
embedding-basedretrieversandthe inverted indices for thekeyword-
based retrievers. The important point is that before receiving a query
and accessing these metadata structures, the exact size of the data
vectors and their locations are unknown. Therefore, there is a need
for a unit that first walks over the metadata and determines the
number of neighboring embeddings in the case of HNSW and their
location in the storage. Then it can load the appropriate data from
theNANDarrays of the storage either directly to on-chipmemory or
the DRAM if necessary. Similar steps need to be taken for keyword-
based retrievers, except that they involve the inverted indices and
the posting lists. Note that this is just one step of the iterative pro-
cess of Search & Retrieval. After the data sizes are determined, the
metamorphic accelerator can be properly configured to perform the
computation. To address this need for data-dependent configuration
and setup for the metamorphic accelerator, we introduce the Meta-
data Navigation Unit (MNU), which is shown in Figure 8. The MNU
integrates three essential capabilities tailored to address the above
challenges. First, it fetches the metadata stored in DRAM to deter-
mine the address and size of the representations to be retrieved from
storage. Second, the MNU generates NVMe commands to retrieve
the required representations through an integratedNVMe command
generator. These commands enable efficient data movement to the
proposed accelerator’s on-chip scratchpads for computation. Finally,
the MNU schedules computation using parametric pre-compiled
kernel templates. At runtime, the MNU fills in kernel template pa-
rameters, such as embedding vector shape or posting list size, to
generate customized kernels that match the query’s requirements
from the kernel templates. This flexible approach avoids the over-
head of full runtime compilation while accommodating the diverse
workloads of embedding-based and keyword-based retrievers.
Metadata interpretation. The first task of theMNU is to locate
and determine the size of the query-dependent representations
stored in NVMe. The metadata is retrieved from DRAM and varies
based on the retrieval method. For embedding-based retrievers, the
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Table 1: Evaluated end-to-end RAG benchmarks.

Benchmark Retriever Retriever Type Token/EmbeddingModel Representation Dimensions Distance Function Database Referenced Generation LLM

BM25 LLAMA2 BM25 Keyword NLTK Tokenizer Variable Length BM25 Inverted Index LLAMA2 34B
SPLADEv2 LLAMA2 SPLADEv2 Embedding, Keyword DistilBERT Variable Length Dot Product Inverted Index LLAMA2 34B
Doc2Vec LLAMA2 Doc2Vec Embedding Skip-Gram 300 L1 HNSW LLAMA2 34B
ColBERT LLAMA2 ColBERT Embedding Bert-Base 128 Squared L2 HNSW LLAMA2 34B

GTR LLAMA2 GTR Embedding T5-Base 768 Dot Product HNSW LLAMA2 34B

metadata identifies the embeddings associated with the current ver-
tex in the graph traversal and its neighbors within the metadata
graph. The sizes of the corresponding embeddings are calculated as
embedding size×number of neighbors. For keyword-based retriev-
ers, themetadata links keywords to their corresponding posting lists
in the inverted index. Here, the size of the posting lists depends on
the number of passages containing each keyword. By determining
the size of the representations, theMNU ensures thatmemory access
requests are tailored to the query’s specific requirements, optimizing
retrieval efficiency.
Retriever-specific kernel templates.Next, to handle the diverse
retrieval algorithms, theMNU utilizes retriever-specific kernel tem-
plates.These templatesencode thehigh-level structureofembedding-
based and keyword-based code, with placeholders for parameters
such as data sizes and dimensions. In embedding-based retrieval,
templates specify parametric tiling and the mapping of embeddings
to compute units thatwill be determined based on runtime data sizes.
For keyword-based retrieval, templates describe scoring operations
for priority queue management. By precompiling these templates
offline and instantiating them at runtime, theMNU avoids the over-
head of just-in-time compilation and maintains execution efficiency.
Kernelconfigurationunit.Expandingontheretriever-specificker-
nel templates, theMNU incorporates a kernel configuration unit that
dynamically creates instances of these templates using parameters
obtained frommetadata. This unit has three key components: a tem-
plate cache, parameter insertion logic, and an instruction buffer. The
template cache stores pre-compiled templates for common retrieval
tasks. The parameter insertion logic replaces placeholders in the tem-
plateswith runtime values, such as embedding dimensions, neighbor
counts, or posting list sizes. The instructionbuffer thenassembles the
instantiated instructions and enables instruction-level parallelism to
optimize execution. For example, for embedding-based retrieval, the
unit fetchesmetadata specifying the number of neighboring vertices
and embedding dimensions, fills the corresponding kernel template
with these parameters, and dispatches it to the compute units.
Programmablememory interface (PMI). To handle the dynamic
and variable dimensions of embedding-based and keyword-based
representations, theMNU incorporates a programmable memory
interface (PMI) that supports multi-dimensional memory access pat-
ternswith configurable bounds and strides. The PMI comprises three
key components: dimension registers, stride calculators, and address
generation units. Dimension registers store runtime-determined
data sizes such as the length of posting lists or embedding dimen-
sions. Stride calculators computememory strides for accessingmulti-
dimensional data layouts, while address generation units issuemem-
ory fetch commands for nested loops and irregular data structures.
For embedding-based retrievers, the PMI dynamically accesses em-
beddings corresponding to a variable number of neighbors. For

keyword-based retrievers, it iterates throughposting lists of differing
lengths, ensuring high-throughput access with minimal overhead.
NVMe command generation. To translate internal fetch requests
into standard NVMe read commands, the MNU incorporates an
NVMe command generator. This module consists of three key ele-
ments: a command queue, an LBA translator, and aDMAengine. The
command queuemanages pendingNVMe requests tomaximize stor-
age bandwidth utilization. The LBA translator converts logical ad-
dresses derived frommetadata into physical logical block addresses
(LBAs) for NVMe storage. The DMA engine supports scatter-gather
operations, enabling efficient transfer of non-contiguous data re-
gions into internal buffers. By leveraging the internal bandwidth
of the storage device and bypassing the traditional PCIe interface,
the NVMe command generator reduces data transfer latency and
power consumption. For example, when fetching posting lists for a
keyword-based retriever, the DMA engine consolidates the required
regions into a contiguous on-chip buffer, optimizing data movement.
Mapping templates to the accelerator.TheMNUdetermines how
representations aremapped onto themetamorphic accelerator based
on the retrieval type and query-specific parameters. For embedding-
based retrievers, embeddings of size𝐷 for the query and its𝐾 neigh-
bors are fetched and mapped as follows: the query embedding is
unrolled across the 𝑁 vector lanes of each XE, while the𝐾 neighbor
embeddings aredistributedacross the𝑁 vectorprocessors,with each
XE processing a segment of the embedding dimension. For keyword-
basedretrievers,posting listsof length𝐿 are fetchedandmappedsuch
that term-specific elements (e.g., term frequency, document length
normalization) are vectorized across vector lanes,whilemultiple doc-
uments in the posting list are distributed across the𝑁 vector proces-
sors. This hierarchical mapping ensures efficient utilization of all the
XEs for both embedding-based and keyword-based workloads while
dynamically adapting to the data layout and query characteristics.
Compiler support. For query embedding via a languagemodel, we
relyonpriorwork[20] thatoffersanopen-sourcecompiler forend-to-
endneural acceleration.This is possible because, in the systolicmode,
the metamorphic accelerator resembles a conventional neural accel-
erator. This compiler also provides support for vector execution that
we leverage and modify for generating parametric kernels for simi-
larity checks in Search& Retrieval.We develop a custom compilation
module for theMNU to support both HNSWs and inverted indices.

5 Evaluation
5.1 Methodology
Benchmarks. Table 1 summarizes the five end-to-end RAG bench-
marks, representative of the RAG pipeline shown in Figure 2. We
use the RAGGED benchmark suite [24], incorporating additional
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Table 2: Evaluated Systems.

CPU-NVMe CPU-DRAM Disag-NVMe Disag-DRAM GPU-DRAM RAGX

Chip Intel Xeon 8175M Intel Xeon 8175M Intel Xeon 8175M1 , NVIDIA A1002 Intel Xeon 8175M1 , NVIDIA A1002 NVIDIA A100 Metamorphic Accelerator
AWS Instance m7g.4xlarge.search r7g.8xlarge.search m7g.4xlarge.search1 , p24.24xlarge2 r7g.8xlarge.search1 , p24.24xlarge2 p4.24xlarge N/A
Cost ($/hour) $1.26 $3.16 $1.261 , $4.092 $3.161 , $4.092 $4.09 $1.09∗

Cores / PEs 32 Cores 32 Cores 32 Cores1 , 6,912 Cuda Cores2 32 Cores1 , 6,912 Cuda Cores2 6,912 Cuda Cores 32×32 XEs, 32 Scalar Unit
Memory 64 GB 512 GB 64 GB1 , 80 GB2 512 GB1 , 80 GB2 80 GB 4 GB (16 MB)
TDP 240W 240W 240W1 , 400W2 240W1 , 400W2 400W 13W

Frequency 2.5 GHz 2.5 GHz 2.5 GHz1 , 1.1 GHz2 2.5 GHz1 , 1.1 GHz2 1.1 GHz 1 GHz
Storage Samsung NVMe 970 N/A Samsung NVMe 970 N/A N/A NAND Flash

Storage Bandwidth 4 Gb PCIe Gen3 N/A 4 Gb PCIe Gen3 N/A N/A NANDData Bus 20 Gbps

Note: 1 Used for search and retrieval. 2 Used for query embedding. * Based on ra3.xlplus pricing.

benchmarks to broaden the evaluation scope. In the Search & Re-
trieval phase, we implement the retrievers using unmodified, de-
fault versions of Pyserini [48] for BM25, the official GitHub repos-
itory for SPLADEv2 [15], and Faiss’s implementation of HNSW [13]
for embedding-based retrievers, with all default optimizations and
multi-threading enabled. For Referenced Generation, we use Meta’s
LLAMA2 (34B) [84] deployed on twoA100swith TensorRT-LLMand
tensor parallelism. The input consists of an average of 850 tokens, a
maximum context length of 4,096 tokens, and a batch size of 1 (up to
256 for sensitivity studies). The query dataset specifies 54 output to-
kens as the golden answer and is in linewith prior studies [24, 46, 73]
that recommend retrieval for ≤ 64 output tokens to maintain high
recall. We scale to 512 output tokens for sensitivity studies. We set
top-𝑘 to 100 for all evaluations [75].
Dataset and database generation.We use the PubMed [24, 62]
biomedical database with four dataset sizes: 500 million (500M), 50
million (50M), 5 million (5M), and 0.5 million (0.5M) passages. To
accommodate the 500M passage dataset, we augmented PubMed’s
50M passageswith randomly generated embeddings. For embedding-
based retrieval, embeddings are generated using GPUs, and HNSW
indices (Faiss,𝑀 =32, 𝑒 𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛=100) are built on CPUs. As
per prior work [53, 54], we set efsearch to 375, 750, 1,500, and 3,000
for 0.5M, 5M, 50M, and 500M passages, respectively, to maintain a
consistent recall as dataset size scales. As for the keyword-based
retrievers, BM25 uses Pyserini for inverted index construction,while
SPLADEv2 embeds passages before index generation. The vector
database size for embedding-based retrieval is computed as 𝑃×𝐷×𝑇 ,
where 𝑃 is the number of passages,𝐷 is the embedding dimension,
and 𝑇 is the datatype size (4 bytes [13]). For example, ColBERT
requires 500𝐾×128×4=256MB for 0.5M and 500𝑀×128×4=256GB
for 500M, while GTR requires 500𝐾 ×768×4 = 1.5 GB and 500𝑀 ×
768×4=1.5 TB, respectively. For keyword-based retrieval, storage
depends on the number of unique tokens and index structures. BM25
0.5M requires 0.36GB and 500M requires 320GB. SPLADEv2 requires
0.18 GB for 0.5M and 178 GB for 500M. We evaluate using 3,800
BioASQ [39] queries, ensuring a fair comparison across all systems.
Baseline systems.We compare RAGXwith the following systems.
Table 2 details the specifications for the Search & Retrieval phase of
each system. (1) CPU-NVMe (baseline): query embedded on the CPU,
with representations (embeddings/posting-lists) stored on direct-
attached NVMe SSD, metadata (HNSW/inverted index) cached in
DRAM, and retrieval performed by the same CPU. (2) CPU-DRAM:
query embedded on the CPU, with representations and metadata

cached in DRAM, and retrieval performed by the same CPU. (3)
Disag-NVMe: query embedded on a GPU, embeddings transferred
to a CPU node over network (100 GbE Ethernet), which performs
the Search & Retrieval from representations stored on NVMe SSD
and metadata cached in DRAM. (4) Disag-DRAM: query embedded
on a GPU, embeddings transferred to a CPU node over network,
which performs the Search & Retrieval from representations stored
in DRAM and metadata cached in DRAM. (5) GPU-DRAM: query
embedding and retrieval both performed on the same GPU, with all
representations and metadata cached in GPUmemory (represents
idealized zero-delay network communication). For all systems (in-
cluding RAGX), we use the EC2 instance from Table 2 for the Search
& Retrieval phase with passages stored on AWS S3 and Referenced
Generation performed on a DGX-A100 cluster (AWS p4.24xlarge
instances) using one, two, and four A100 GPUs for LLAMA2 (13B),
LLAMA2 (34B), and LLAMA2 (70B), respectively.
Baseline measurements. We deploy our benchmarks on AWS
Sagemaker following the AWS blog and example code [78, 79]. This
setup allows us to process a custom dataset (PubMed), generate a
vector database, and store the representations on NVMe, DRAM,
or EBS. For the Search & Retrieval phase, EC2 instances are provi-
sioned (see Table 2), which fetch the top-𝑘 passages from AWS S3
and send them to an AWS p4.24xlarge GPU instance for Referenced
Generation.We perform realmeasurements by running 3,800 queries
fromBioASQ, where each query traverses the entire RAG pipeline as
described in §2.2. For each phase, we measure runtime using timers
integrated into the code to ensure precise and accurate measure-
ments. All results are based on the median latency of 3800 queries
to ensure evaluation accuracy.
RTL implementation and prototyping. The metamorphic accel-
erator is implemented in Verilog and synthesized using Synopsys
Design Compiler 2023.09 with the FreePDK 45 nm standard cell
library, achieving a clock frequency of 1 GHz.
Metamorphic accelerator simulator.We develop a cycle-level
simulator for the RAGX accelerator to evaluate its performance and
energy consumption. Our simulator models all the parts of the
proposed accelerator (§4) and accounts for all critical components:
NVMe flash array reads, control logic for kernel scheduling, execu-
tion time on processing units, metadata traversal from DRAM using
the MNU, and the network latency to transfer data between each
phase since the deployment of RAGs is in a disaggregated datacenter
setting. For embedding-based retrieval, we compile the embedding
model using the compiler described in §4.3. To simulate the entire
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Figure 10: Runtime breakdown comparisonwith CPU-NVMe for 0.5M, 5M, 50M, 500M passages.

Search & Retrieval phase, we generate traces from baseline runs that
capture how the system traverses the HNSW graph (embedding-
based) or inverted index (keyword-based). These traces include ver-
tex scoring sequences for embedding-based and posting list accesses
for keyword-based retrieval.We use these traces to schedule instruc-
tions on our simulated accelerator, instantiating template kernels
with actual metadata values. NVMe SSD access latencies are mod-
eled using an open-source simulator [58]. This approach allows us to
accurately measure performance and energy consumption for each
operation, from data access to computation, providing a thorough
assessment of RAGX’s capabilities across various scenarios.
RAGXperformancemeasurement. Real deployment of a research
chip in the cloud is not currently feasible. We follow standard meth-
ods for accelerator research in the cloud [74, 88] that augments real
measurements with careful and systematic simulation. To preserve
the overheads of a disaggregated datacenter, we systematically re-
place the embedding, search, and retrieval timeswith the correspond-
ingoperations in theCPU-NVMebaselineonAWS, ensuring that net-
work latencies and variabilities from other phases, such as S3 access,
Augmentation for Query Reconstruction, and Referenced Generation,
are included.We repeat this process for all 3,800 BioASQ queries and
report the median latency to even capture the impact of outliers.

5.2 Experimental Results
5.2.1 ThroughputandCostAnalysis. For throughputmeasurements,
we obtain latencies for all 3,800 BioASQ [39] queries in our dataset
for each benchmark. We run baseline systems on AWS, while for
RAGX, we simulate the Search & Retrieval phase and obtain latencies
for Augmentation for Query Reconstruction and Referenced Gener-
ation from our AWS measurements. Then we generate traces per
benchmark, simulating Poisson-distributed query arrivals with a
consistent seed across all systems. We develop an analytical model
to measure throughput, sweeping the query arrival rate 𝜆 from 1 to
100 queries/second in 0.1 increments and repeating each experiment

10 times. We report the throughput normalized to CPU-NVMe (base-
line), where throughput is defined as the highest 𝜆where the system
processes queries without queue accumulation or increased latency.

Figure 9 illustrates the throughput improvements of RAGX com-
pared to CPU-NVMe across various dataset sizes, retriever types, and
number of drives. On average, RAGX achieves 1.6×, 2.3×, 4.3×, and
5.7× throughput gains over CPU-NVMe for datasets containing 0.5M,
5M, 50M, and 500M passages, respectively. As dataset size increases,
the performance benefits of RAGXbecomemorepronounced,with an
average improvementof 3.6× for 500M compared to 0.5M, demonstrat-
ing efficiency with larger databases. For embedding-based retrieval,
improvements aremore significant than for keyword-based retrieval,
as RAGX reduces storage access latency, accelerates similarity scor-
ing, and accelerates query embedding. For instance, RAGX achieves a
1.9× to 2.7× performance improvement for GTR-LLAMA2 over BM25-
LLAMA2 as the dataset scales from 0.5M to 500M. Additionally, RAGX
maintains consistent throughput improvements as the number of
drives increases from one to eight, showcasing efficiency for scale-
out setups. To understand the sources of RAGX’s improvements, we
conduct a detailed runtime breakdown analysis, shown in Figure 10.
NVMe retrieval latency reduction. RAGX significantly reduces
NVMe read latency, lowering the proportion of runtime spent on
storage accesses to 4.1%, 6.7%, 12.8%, and 40% for 0.5M, 5M, 50M,
and 500M passages, respectively, compared to CPU-NVMe’s 26.6%,
47.7%, 63.2%, and 75%. The remaining storage access latency in RAGX
stems from the NAND array’s read time. For GTR-LLAMA2, with
50M, NVMe latency decreases from 72% to 27%with the 50M passage
dataset, accounting for a 2.9× speedup. ColBERT-LLAMA2 exhibits
the largest reduction among the embedding-based retrievers due to
its smaller embedding size. For keyword-based retrievers such as
BM25-LLAMA2, the impact increases with dataset size. With 50M pas-
sages, RAGX reduces NVMe latency from 60.9% to 10.3% of runtime
for BM25-LLAMA2 by removing the PCIe latency.
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systems, normalized to CPU-NVMe. GPU-DRAMwas infeasible for 500M due to GPUmemory limitations.

Performance as dataset size grows. RAGX demonstrates increas-
ing performance benefits as dataset size grows, efficiently handling
the higher volume of storage accesses required for searching larger
databases. For instance, GTR-LLAMA2 incurs an average of 347 stor-
age accesses per queryon 0.5M,which increases to 1493on 50M,while
RAGX ’s normalized throughput improves by 1.5× over this scale-up.
Similarly, ColBERT-LLAMA2 storage accesses increase from 393 on
0.5M to 3023 on 500M, with RAGX providing a 2.9× throughput im-
provement. These highlight RAGX ’s effectiveness in mitigating stor-
age overhead and accelerating retrieval as database size increases.
Performance across retrievers. RAGX demonstrates better perfor-
mance across diverse retrievers as dataset size grows, with notable
improvements for the embedding-based retrievers. For GTR (5M
dataset), RAGX reduces embedding generation time by 12× and simi-
larity computation time by 37.6× compared toCPU-NVMe, providing
a 3.1× throughput improvement. Performance gains also extend to
keyword-based retrievers such as SPLADEv2, which uses a language
model to expand queries. On the 0.5M dataset, Search & Retrieval
account for 32% of end-to-end time, with 82% spent on query embed-
ding.Asdataset sizegrows (50M),NVMeaccessandsimilarity scoring
dominate, increasing Search & Retrieval time to 93%. With this shift-
ing runtime profile, RAGX delivers growing speedups for SPLADEv2,
ranging from 1.1× on 0.5M passages to 6.8× on 500M passages.
Performance trends withmore storage drives. RAGXmaintains
consistent performance when partitioning representations across
multiple drives. With 50M passages, RAGX achieves 4.4× throughput
improvement with two drives and 4.3×with four or eight drives rela-
tive toCPU-NVMe. The proposed data placement strategy is effective
for both keyword-based and embedding-based benchmarks, with
BM25-LLAMA2 showing3.2×andGTR-LLAMA2 showing4.1× improve-
ment using eight drives. This performance stems from RAGX’s par-
allel execution strategy, performing computations in each drive con-
currently and accumulating top-𝑘 results on the CPU in the augmen-
tation server. Minor variations in embedding-based retriever perfor-
mance are due to changes in graph structures and traversal patterns.
Benefits from co-locating query embedding with retrieval. In
disaggregated datacenters, offloading query embedding to a separate
node introduces additional network latency (on average 86 ms) to
transfer embeddings (e.g., 128×4 bytes for ColBERT) to the retrieval
node, as discussed in §2.4. While GPUs reduce embedding time to
just 1% of the total runtime for 50M passages, Disag-NVMe still incurs
an additional 11% overhead compared to CPU-NVMe due to network
transfer costs. By co-locating embedding and retrieval, RAGX elim-
inates this overhead. Its specialized design accelerates both query
embedding and similarity search by reusing the resources of the

BM25 SPLADEv2 Doc2Vec ColBERT GTR Geomean

30x
20x

0x
10x

40x
50x 151x

151x
150x

146x

50
x

37
x

33
x

26
x

2x1x

Xeon
A100

Metamorphic
(1 Drive)

Ac
ce

le
ra

to
r 

En
er

gy
 E

ffi
cie

nc
y

Metamorphic
(2 Drives)

Metamorphic
(4 Drives)

Metamorphic
(8 Drives)

Nvidia
8175M

(a)

BM25
LLAMA2

SPLADEv2
LLAMA2

Doc2Vec
LLAMA2

ColBERT
LLAMA2

GTR
LLAMA2 Geomean

1.0x

0.5x

1.5x

RAGX 
(4 Drives)

RAGX 
(1 Drives)

RAGX 
(2 Drives)

RAGX 
(8 Drives)

Sy
st

em
 

En
er

gy
 E

ffi
cie

nc
y

1x 0.
98

x
1.

12
x

1.
12

x
1.

12
x

1.
08

x

(b)

1.
08

x

CPU
DRAM

Disag
DRAM

GPU
DRAM

Disag
NVMe

0.
99

x

Figure 12: Energy efficiency comparison for 5M passages.

metamorphic accelerator, boosting the performance to 4.3× over
Disag-NVMe for 50M passages.
Comparison with additional baselines. Figure 11 shows the
throughput improvement of RAGX, CPU-DRAM, Disag-NVMe, Disag-
DRAM, and GPU-DRAM normalized to CPU-NVMe. RAGX achieves
average throughput improvements of 1.5×, 4.3×, and 1.7×, overCPU-
DRAM, Disag-NVMe, and Disag-DRAM, respectively, for 50M passages.
Additionally, RAGX provides 1.4× speedup while GPU-DRAM is 119%
more expensive per query for 50M passages. Results for 500M dataset
could not be obtained for GPU-DRAM because the dataset’s embed-
dings do not fit within the A100’s DRAM capacity. RAGX, for the
50M dataset, outperforms CPU-DRAM by 1.5×while CPU-DRAM is
266% more expensive per query. For 500M, the cost difference in-
creases to 391%while the speedup is 1.6×. These results reinforce the
substantial cost benefits of using direct-attached NVMe for storing
representations.
Cost analysis. Following prior work [40], we compute the $cost per
query by summing the costs of each phase in the execution pipeline,
where each phase’s cost is the product of its runtime and the AWS
instance cost (see Table 2). Since RAGX is not currently available
on cloud platforms, we estimate its cost using AWS ra3.xlplus
instances, which provide in-storage database acceleration with in-
tegrated storage costs, serving as an effective proxy as per prior
studies [55]. We omit data transfer costs. As shown in Figure 11,
RAGX not only delivers notable throughput improvements but also
achieves the lowest cost among all evaluated systems. As dataset size
increases from 0.5M to 500M passages, our results indicate that CPU-
DRAM retrieval is between 119% and 391%more expensive per query
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than RAGX. This cost trade-off aligns with industry and research
trends discussed in §2.4.

5.2.2 Energy Efficiency. Wemeasured energy consumption using
Intel’s RAPL [77] for CPUs, NVIDIA’s SMI [65] for GPUs, and RTL
synthesis power resultswith on-chipmemory energymodeled using
CACTI [61] for RAGX. We used 1.93 pJ/bit for storage access over
PCIe and did not include network energy in our calculations. We
computed total energy by multiplying the measured average power
for each component with its corresponding runtime for each system
configuration.
System and accelerator energy efficiency. Figure 12(b) compares
system energy efficiency normalized to CPU-NVMe for various con-
figurations (5M passages). RAGXwith a single drive shows energy
efficiency improvements of 1.12× over CPU-NVMe, compared to no
noticeable improvement for CPU-DRAM and a 1.08× gain for GPU-
DRAM. RAGX’s limited overall gain is primarily due to the dominant
energy consumption of two NVIDIA A100 GPUs (400W TDP each)
used for Referenced Generation. However, focusing on the Search
& Retrieval phase, RAGX’s metamorphic accelerator demonstrates
significant improvements as shown in Figure 12(a). The proposed
accelerator achieves an average 50× energy efficiency gain over
CPU-NVMe, compared to GPU-DRAM’s 2× improvement. SPLADEv2
benefits most, with up to 150× efficiency increase due to RAGX’s ac-
celeration of both embedding and scoring processes. Notably, RAGX
maintains a 26× improvement even with eight drives.
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Figure 13: Recall and end-to-end accuracy on 5M passages.

5.2.3 Recall and End-to-End Accuracy. Figure 13(a) and Figure 13(b)
show recall@10 and recall@100, respectively, for RAGX configura-
tions with two, four, and eight storage drives. The keyword-based
retrievers maintain steady recall as the representation database re-
mains unchanged, replicated, and queried across drives in parallel.
In contrast, the embedding-based retrievers use the proposed data
placement strategy (see §3.2), which partitions embeddings and
assigns each drive a smaller, privateHNSWgraph. Despite this struc-
tural change, the embedding-based retrievers show no degradation;
ColBERT and GTR exhibit 13% and 4% improvements in recall@100,
respectively, with eight drives. This improvement results from lo-
calized computation on smaller graphs and the aggregation of candi-
dates frommultiple drives, which expands the effective search space.
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Figure 14: Throughput improvement over IVF.

Figure 13(c) shows the impact of this increased recall on RAGX’s end-
to-end RAG accuracy (Unigram 𝐹1 [24]). The baseline accuracy is
consistent with prior work [6, 72, 86]. The keyword-based retrievers
show no change in accuracy when scaling from one to eight drives,
while the embedding-based retrievers see a 2–3% increase depending
on the retriever.

5.2.4 Comparison with Alternative Vector Databases. We compare
RAGXwithanon-graphvectordatabase: InvertedVectorFile (IVF) [13].
Unlike graph-based databases that rely on greedy traversal, IVF em-
ploys a flat index. It partitions the vector space via 𝑘-means and
assigns each vector to its nearest centroid.At query time, it computes
distances to all centroids and probes only a small subset, reducing
compute at the expense of recall. We restrict IVF comparisons to
embedding-based benchmarks (ColBERT, Doc2Vec, GTR), which
align with its flat index structure. We use a single RAGX accelerator
to ensure fairness; however, RAGX scales efficiently across multiple
devices, making this a conservative baseline. We use two IVF con-
figurations: (1) CPU-DRAM, where the full vector index is cached in
DRAM, and (2) CPU-NVMe, where vectors reside in NVMe and only
centroids are cached inDRAM. Following [13, 32],we set the number
of clusters to the square root of the corpus size and retrieve 0.1%
per query. Figure 14 illustrates the throughput normalized to CPU-
NVMe. As dataset size increases, RAGX outperforms CPU-NVMe by
20% to 7.9× from 0.5M to 500M due to increasing I/O overheads in IVF
that RAGXmitigates via in-storage acceleration. Against CPU-DRAM,
RAGX still achieves 12% to 51% higher throughput, enabled by its
metamorphic accelerator that executes similarity search efficiently.

5.2.5 Sensitivity Analysis.
LLM inference configurations. Figure 15 illustrates the effects
of system and LLM setup changes on the runtime breakdown and
throughput improvement. The baseline is CPU-NVMe for Search &
Retrieval and two A100 GPUs for Referenced Generation. Reducing
the number of A100 GPUs to one shifts the runtime more towards
the Referenced Generation, lowering RAGX’s benefit from 4.3× to
3.0×. Whereas, using four A100 GPUs or two H100 GPUs boosts
improvement to 4.3× and 4.6×, respectively. On a machine with two
A100s, if the output token length is 512, the benefits can drop to 1.2×.
However, utilizing FlashAttention-2 [7] (a software technique) raises
the gains to 1.9×. These trends illustrate that Search & Retrieval is a
bottleneck in certain configurations, contrary to the assumption that
Referenced Generation always dominates, and are consistent with
prior works [72, 82]. Both software and hardware improvements in
inferencing will help the benefits from RAG acceleration and RAGX.
Networked storage drives. Figure 16 demonstrates RAGX’s perfor-
mance with representations distributed across Ethernet-connected
storage drives. For eight drives, RAGXmaintains 2.5× throughput
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improvement, consistent with PCIe setups. This stability results
from RAGX’s elimination of inter-storage drive communication and
performing independent computations on each device.
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Batchsize.RAGX supports concurrentqueryprocessingviabatching.
In systolic mode, the batching is performed as it is done convention-
ally. In vector mode, vector engine columns are multiplexed across
concurrent batched queries. Figure 17 compares RAGX and GPU-
DRAM performance over CPU-NVMe across batch sizes 8, 64, and
256. RAGXmaintains strong speedups: 8.5× for small batches versus
GPU-NVMe’s 3.9×, and 4.4× for large batches versus GPU-DRAM’s
4.0×. As batch size grows, Referenced Generation dominates runtime
(e.g., 73% at batch size 256), limiting RAGX’s benefits. Nevertheless,
RAGX still provides gains by accelerating batched embedding gener-
ation and reducing NVMe access time for fetching representations.

6 RelatedWork
Systems for RAG. Prior work on Search & Retrieval focuses on
accelerating the similarity search process through algorithmic im-
provements [12, 13, 47, 50, 57], enhancing runtimeefficiency through
parallelization [13, 48], and near-memory acceleration [32]. These
worksmake the assumption that all representations reside in DRAM.
Other works address this by compressing or selectively storing the

representations in DRAM, while the entire representation database
is stored in a storage drive [4, 19, 30]. However, this setup is prone
to significant storage access overheads, as representations still need
to be retrieved from a storage drive. For Referenced Generation, prior
works focus on accelerating LLM inference through system frame-
works [29, 51], model parallelism [2], quantization [49], and hard-
ware optimizations [35, 45, 52].While priorwork accelerates individ-
ual RAG components, it overlooks Search & Retrieval, where storage
access is a key bottleneck. To comprehensively accelerate Search
& Retrieval, RAGX uses an in-storage accelerator that not only sig-
nificantly reduces storage access overheads but also performs both
similarity search and embedding generation for language models.
In-storage acceleration. In-storage acceleration [23, 42] has been
applied to diverse fields, including genomics [58], database opera-
tions [11], and deep learning [55, 56]. Despite this progress, only a
small body of work has explored in-storage acceleration for approx-
imate nearest neighbor [37, 89]. These inspiring works are point
solutions that use custom hardware for graph traversal or bitonic
sorting. These solutions do not provide a programmable accelerator
capable of supporting diverse embedding-based and keyword-based
RAGs or executing end-to-end RAG pipelines. They also omit sup-
port for embedding generation, a core component in RAGs that rely
on language models such as ColBERT (206 MB) or GTR (419.62 MB)
to map queries into the same representation space as database en-
tries.RAGXproposes a completely novelmetamorphic accelerator for
in-storage acceleration of end-to-end RAG execution in datacenters
for both keyword-based and embedding-based representations that
necessitates accelerating language models for query embedding.

7 Conclusion
Retrieval-augmented generation (RAG) is gaining traction in enter-
prise applications due to its ability to combine LLMs with real-time
information retrieval from databases. As deployments shift to per-
sistent storage to handle larger databases, the Search & Retrieval
phase–not LLM inference–becomes the primary source of end-to-
end latency. To address this, we propose a shape-shifting metamor-
phic in-storage architecture that supports diverse RAG algorithms,
dynamic data structures, and query embedding generation within
storage. Evaluation shows that RAGX delivers up to 4.3× and 1.5×
improvements in throughput over CPU- and GPU-based retrieval
pipelines, respectively. These results show that considering end-to-
end execution of LLMs in enterprise applications, such as RAG, calls
for innovations that cross systems and architecture.
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A Artifact Appendix
A.1 Abstract
This artifact provides scripts that can be executed on various ma-
chines, includingAWSEC2 instances, to evaluateRAGX. These scripts
facilitate database generation for all search and retrieval benchmarks
used in our evaluation. This appendix includes detailed instructions
for setting up and running benchmarks on the CPU-DRAM baseline,
as it is easily accessible and suitable for verifying the process, along
with the RAGX simulator.

A.2 Artifact Check-List
• Program: For query embedding, we use publicly available
implementationsofBM25[48],SPLADEv2[15,16],ColBERT[36],
Doc2Vec [41], and GTR [64]. To generate databases, we use
Faiss [13] for HNSW-based embedding-based retrieval, and
Pyserini [48] and SPLADEv2’s official GitHub [15] for in-
verted indices used in keyword-based retrieval.

• Compilation:Docker images include all required libraries.
• Model:We use encoder-based language models to generate
both passage and query embeddings. The loading and usage
of these models are integrated into our provided scripts.

• Dataset:We use PubMed [62] for passages and BioASQ [39]
for queries; download instructions are provided.

• Run-time environment: Ubuntu 22.04, CUDA 12.1.0
• Hardware: Passage embedding generation was performed
using four A10 GPUs. RAGX search and retrieval experiments
were run on anAWSr7g.8xlarge.search instance. For
small datasets (e.g., 0.5Mpassages),CPU instanceswithat least
64GB of DRAM can be used.

• Metrics: The primary metric is execution time (in seconds).
• Output: The artifact generates latencymeasurements for the
queryembeddingand retrieval phases forboth theCPU-DRAM
baseline and the RAGX simulator.

• Experiments:ADocker container is provided, with all steps
detailed in the README.

• Disk Space: 100 GB
• Time Needed -Workflow: 1 hour
• Time Needed - Experiments: 3 hours
• Publicly Available: Yes
• Archived: 10.5281/zenodo.15092497
• Publiclyavailable:https://github.com/rohanmahapatra/ragx

A.3 Description
Following the README instructions, users can set up benchmarks,
run the CPU-DRAM baseline for latency, and use the RAGX simulator
for embedding, search, and retrieval.

A.3.1 Software Dependencies. The README in the artifact repos-
itory provides instructions for manually setting up the software en-
vironment. For ease of use, we also provide a Docker container that
includes all prebuilt dependencies.We recommend using the Docker
setup to ensure consistency and avoid manual installation issues.

A.4 Installation
Follow the steps/instructions provided in the GitHub repository. A
brief overview of the steps is also outlined below. First, clone the
repository. After cloning, build the Docker image by executing:

• Build the Docker image: ./build_docker.sh
• LaunchwithGPU(recommended):./run_docker_gpu.sh
• Or launch with CPU: ./run_docker_cpu.sh

This opens a shell in /app with scripts to download data, build
databases, measure CPU-DRAM, and run the RAGX simulator.

A.5 ExperimentWorkflow
Shell scripts for executing the full workflow are located in the /app
directory of the Docker container. The workflow consists of four
scripts:

• download_datasets.sh:Downloads therequireddatasets
and builds the 0.5M passage dataset used throughout the ar-
tifact.

• build_databases.sh:Constructs thesearchandretrieval
databases forBM25,ColBERT,Doc2Vec,andGTR(note:SPLADEv2
is excluded from the functional artifact).1

• run_cpu_dram.sh: Runs the evaluation for CPU-DRAM
and stores the results in /app/baseline-CPU-DRAM/
cpu_dram_results.

• run_ragx_simulations.sh: Runs the evaluation for
RAGXand stores the results in/app/ragx.simulator/
ragx-results.csv.

A.6 Evaluation and Expected Results
After running the experiment workflow, the results for CPU-DRAM
will be available in /app/baseline-CPU-DRAM/cpu_dram_
results. These results report the per-query latency for search
and retrieval. For embedding-based retrieval, the latency is further
broken down into two components: embedding latency and search
latency. The expected CPU-DRAM latencies are listed below. (Note:
actual timesmay vary depending on the system used for evaluation.)

• BM25: total search and retrieval latency – 0.008s
• ColBERT: embedding – 0.009s, search and retrieval – 0.0002s
• Doc2Vec: embedding – 0.0003s, search and retrieval – 0.0007s
• GTR: embedding – 0.07s, search and retrieval – 0.01s

ForRAGX, the results are available on/app/ragx.simulator/
ragx-results.csv. The CSV file provides the median, average,
and minimum time (in milliseconds) for a single query. It is impor-
tant to note that each query point traverses the graph (e.g., HNSW)
and scores a varying number of points, which necessitates the com-
pilation of multiple kernels. For this artifact, we provide several
precompiled kernel examples that the simulator uses to generate
outputs and demonstrate functionality.

A.7 Experiment Customization
The primary point of customization is the dataset. To use a dataset
other than PubMed, the user should provide a new dataset in JSONL
format. After preparing the new dataset, the user should update
the dataset path in the scripts. They can then run the database and
CPU-DRAM scripts as usual.

1Generating databases requires substantial time and computational resources. For
instance, a 50M-entry database requires 48 hours on 4 A10 GPUs with 500 GBmemory,
while a 500M-entry database takes 96 hours. To ensure feasibility, the artifact is
limited to 500K entries. We also provide database traces with query-specific embedded
passages and precomputed scores.

https://github.com/rohanmahapatra/ragx
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